The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning

نویسندگان

  • Nicholas J. Reiter
  • Amy K. Osterman
  • Alfonso Mondragón
چکیده

RNase P is an RNA-based enzyme primarily responsible for 5'-end pre-tRNA processing. A structure of the bacterial RNase P holoenzyme in complex with tRNAPhe revealed the structural basis for substrate recognition, identified the active site location, and showed how the protein component increases functionality. The active site includes at least two metal ions, a universal uridine (U52), and P RNA backbone moieties, but it is unclear whether an adjacent, bacterially conserved protein loop (residues 52-57) participates in catalysis. Here, mutagenesis combined with single-turnover reaction kinetics demonstrate that point mutations in this loop have either no or modest effects on catalytic efficiency. Similarly, amino acid changes in the 'RNR' region, which represent the most conserved region of bacterial RNase P proteins, exhibit negligible changes in catalytic efficiency. However, U52 and two bacterially conserved protein residues (F17 and R89) are essential for efficient Thermotoga maritima RNase P activity. The U52 nucleotide binds a metal ion at the active site, whereas F17 and R89 are positioned >20 Å from the cleavage site, probably making contacts with N(-4) and N(-5) nucleotides of the pre-tRNA 5'-leader. This suggests a synergistic coupling between transition state formation and substrate positioning via interactions with the leader.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Op-nare120420 1..10

RNase P is an RNA-based enzyme primarily responsible for 50-end pre-tRNA processing. A structure of the bacterial RNase P holoenzyme in complex with tRNA revealed the structural basis for substrate recognition, identified the active site location, and showed how the protein component increases functionality. The active site includes at least two metal ions, a universal uridine (U52), and P RNA ...

متن کامل

Bacterial ribonuclease P holoenzyme crosslinking analysis reveals protein interaction sites on the RNA subunit.

The structure of the Escherichia coli ribonuclease P (RNase P) holoenzyme was investigated by site-directed attachment of an aryl azide crosslink reagent to specific sites in the protein subunit of the enzyme. The sites of crosslinking to the RNase P RNA subunit were mapped by primer extension to several conserved residues and structural features throughout the RNA. The results suggest rearrang...

متن کامل

The RNR motif of B. subtilis RNase P protein interacts with both PRNA and pre-tRNA to stabilize an active conformer.

Ribonuclease P (RNase P) catalyzes the metal-dependent 5' end maturation of precursor tRNAs (pre-tRNAs). In Bacteria, RNase P is composed of a catalytic RNA (PRNA) and a protein subunit (P protein) necessary for function in vivo. The P protein enhances pre-tRNA affinity, selectivity, and cleavage efficiency, as well as modulates the cation requirement for RNase P function. Bacterial P proteins ...

متن کامل

Structure of Mth11/Mth Rpp29, an essential protein subunit of archaeal and eukaryotic RNase P.

We have determined the solution structure of Mth11 (Mth Rpp29), an essential subunit of the RNase P enzyme from the archaebacterium Methanothermobacter thermoautotrophicus (Mth). RNase P is a ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving the 5' leader sequence during maturation of tRNAs in all three domains of life. In eubacteria, this enzyme is made up of two subunits:...

متن کامل

Protein components contribute to active site architecture for eukaryotic ribonuclease P.

In eukaryotes, ribonuclease P (RNase P) requires both RNA and protein components for catalytic activity. The eukaryotic RNase P RNA, unlike its bacterial counterparts, does not possess intrinsic catalytic activity in the absence of holoenzyme protein components. We have used a sensitive photoreactive cross-linking assay to explore the substrate-binding environment for different eukaryotic RNase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012